

CONTRACTION DE LA CALIBRATION DEL CALIBRATION DE LA CALIBRATION DE LA CALIBRATION DE LA CALIBRATION DEL CALIBRATION DE LA CALIBRATICA DE LA CALIBRATICA DE

- APEX
- LABSOCS
- Géométrie variable
- Test LS

APEX

LABSOCS

Sur la base d'une caractérisation des détecteurs et d'un éditeur de géométrie, LABSOCS permet l'obtention du rendement photoélectrique pour la configuration définie

Nouveau:

Caractérisation de détecteurs à puit

→ Obtention du rendement photoélectrique d'une source dans le puit

LABSOCS

Les sources d'incertitude des courbes de rendements obtenues sont :

- •Incertitude de la méthode
- •Incertitude de la caractérisation du détecteur

•Incertitude quant à la modélisation de la configuration source – détecteur

LABSOCS

APEX version 1.3 et précédentes → Géométrie fixe

→ Touts les données:

description du récipient, choix du détecteur, hauteur / volume de remplissage, densité et matrice, interstice source détecteur)

sont à saisir lors de la définition de la calibration

→ Les géométries peuvent être définies librement

Dimensionen bearbeiten - Allgemeiner Becher (Spezialform)									
Beschreibung:									
Komm	Kommentar								
Einh.: @ mm O cm O m O in O ft									
Nr.	Beschreibung	d.1	d.2	Material	Dichte	Rel. Konz.			
1	Becher			▼					
2	obere Schicht	0		▼	0	0.00			
3	untere Schicht	0		▼	0	0.00			
4	Absorber 1	0		▼	0				
5	Absorber 2	0		▼	0				
6	Quelle-Detektor	0	0	▼					

LABSOCS

APEX 1.4 → Géométrie variable

Données fixes (à saisir lors de la définition de la calibration)

- Description du récipient
- Choix du détecteur

Paramètres libres (pouvant être saisis lors de la définition de la source)

- Hauteur / Volume de remplissage
- Densité et matrice
- Interstice source détecteur

Limitation:

- Uniquement avec APEX (Genie2k exclu)
- Source externe : utilisation d'un cône standard (pas de modélisation de détails)
- Ajustement empirique

Intérêt de Spiez pour les géométries variables

Le site de Spiez dispose de:

- ~15 détecteurs
- 6 récipient de mesure
- 2 matrices
- 5 densité

Soit ~ 1000 calibrations

Paramètres variables:

- matrices
- densité
- → Réduction du nombre de calibration d'un facteur 10

Tests LS

Gamme de volume de 2 cm³ (géométrie dans le puit) à 2000 cm³ (géométrie «1LAC»)

	Diamètre intérieur [mm]	Hauteur de remplissage [mm]	Volume [cm3]
VAR-SCIN	25	5 - 35	2.5 - 17
VAR-D60	44	9 - 40	14 - 61
VAR-12LS	92	10 - 75	72 - 500
VAR-1LAC	172	15 - 86	350 - 2000

Sources utilisées

Ampoules d'Am-241 et de Cs-137 fournies par l'IRA (avec nos remerciements)

Ampoule	Masse [g]	A [Bq]	DA [-]
m137cs32f1	1.01	205.9	1.0%
m241Am8f3	0.5082	52.8	1.5%
m241Am8f4	m241Am8f4 0.5147		1.5%

Tests LS

Résultat Analyse du pic de 59.5 keV de l'Am-241

Tests LS

Résultat Analyse du pic de 662 keV du Cs-137

Tests LS

Conclusions et perspectives:

- Les écarts par rapport à la référence sont compatibles avec l'incertitude déclarées sur le rendement
- Finir les mesures du Cs-137
- Optimalisation des géométries afin de réduire la tendance fonction du volume
- Etudier la variabilité des récipients
- Introduire les géométries variables dans nos procédures standards