

1

- APEX
- LABSOCS
- Géométrie variable
- Test LS

• APEX

Gamma Spektrometrie Workshop, Berne, 2017 Géométrie variable

APEX, Calibration numérique et Géométrie variable LABSOCS

Sur la base d'une caractérisation des détecteurs et d'un éditeur de géométrie, LABSOCS permet l'obtention du rendement photoélectrique pour la configuration définie

Nouveau:

Caractérisation de détecteurs à puit

→ Obtention du rendement photoélectrique d'une source dans le puit

APEX, Calibration numérique et Géométrie variable LABSOCS

Les sources d'incertitude des courbes de rendements obtenues sont :

•Incertitude quant à la modélisation de la configuration source – détecteur

APEX, Calibration numérique et Géométrie variable LABSOCS

APEX version 1.3 et précédentes **→** Géométrie fixe

→ Touts les données:

description du récipient, choix du détecteur, hauteur / volume de remplissage, densité et matrice, interstice source détecteur)

sont à saisir lors de la définition de la calibration

→ Les géométries peuvent être définies librement

Dimensionen bearbeiten - Allgemeiner Becher (Spezialform)								
Beschreibung:								
Kommentar								
Einh.: ●mm Ocm Om Oin Oft								
Nr.	Beschreibung	d.1	d.2	Material	Dichte	Rel. Konz.		
1	Becher			-				
2	obere Schicht	0		-	0	0.00		
3	untere Schicht	0		-	0	0.00		
4	Absorber 1	0		-	0			
5	Absorber 2	0		•	0			
6	Quelle-Detektor	0	0	_				

• LABSOCS

APEX 1.4 → Géométrie variable

Données fixes

(à saisir lors de la définition de la calibration)

- Description du récipient
- Choix du détecteur

Paramètres libres (pouvant être saisis lors de la définition de la source)

- Hauteur / Volume de remplissage
- Densité et matrice
- Interstice source détecteur

Limitation :

- Uniquement avec APEX (Genie2k exclu)
- Source externe : utilisation d'un cône standard (pas de modélisation de détails)
- Ajustement empirique

7

Intérêt de Spiez pour les géométries variables

Le site de Spiez dispose de:

- ~15 détecteurs
- 6 récipient de mesure
- 2 matrices
- 5 densité

Soit ~ 1000 calibrations

Paramètres variables:

- matrices
- densité
- ➔ Réduction du nombre de calibration d'un facteur 10

APEX, Calibration numérique et Géométrie variable Tests LS

Gamme de volume de 2 cm³ (géométrie dans le puit) à 2000 cm³ (géométrie «1LAC»)

	Diamètre intérieur [mm]	Hauteur de remplissage [mm]	Volume [cm3]
VAR-SCIN	25	5 - 35	2.5 - 17
VAR-D60	44	9 - 40	14 - 61
VAR-12LS	92	10 - 75	72 - 500
VAR-1LAC	172	15 - 86	350 - 2000

Sources utilisées

Ampoules d'Am-241 et de Cs-137 fournies par l'IRA (avec nos remerciements)

Ampoule	Masse [g]	A [Bq]	DA [-]
m137cs32f1	1.01	205.9	1.0%
m241Am8f3	0.5082	52.8	1.5%
m241Am8f4	0.5147	53.4	1.5%

Tests LS

Résultat Analyse du pic de 59.5 keV de l'Am-241

Abweichung zur Am-241 Referenz

Gamma Spektrometrie Workshop, Berne, 2017 Géométrie variable

Tests LS

Résultat

Analyse du pic de 662 keV du Cs-137

Abweichung zur Cs-137 Referenz

Gamma Spektrometrie Workshop, Berne, 2017 Géométrie variable

Tests LS

Conclusions et perspectives:

- Les écarts par rapport à la référence sont compatibles avec l'incertitude déclarées sur le rendement
- Finir les mesures du Cs-137
- Optimalisation des géométries afin de réduire la tendance fonction du volume
- Etudier la variabilité des récipients
- Introduire les géométries variables dans nos procédures standards

12