

Influence du positionnement de la source, de la matrice et de la densité sur le rendement et les pertes par cascade

1

C position, matrice et densité: influence sur le rendement

- Problématique
- Influence sur le rendement (interface source – détecteur, hauteur de remplissage, parallaxe source – détecteur, matrice de la source)
- tau de comptage en fonction des différentes couches de la source
- Influence de la distance source détecteur sur les pertes par cascade
- Résumé
- Influence de la matrice: cas de l'intercomparaison BAG-IRA de 2017

Paramètre	Filtre		Récipient 0.25 litre		source ponctuelle	
H1 [mm]	H1 _{cal}	0	H1 _{cal}	0	H1 _{cal}	0
PA [mm]	PA_{cal}	0	PA_{cal}	0	PA_{cal}	0
HS [mm]	HS_{cal}	0.5	HS_{cal}	35	HS_{cal}	0.1
DS [mm]	DS_{cal}	35	DS_{cal}	96	DS_{cal}	0.1
RO [g/cm ³]	RO _{cal}	1	RO _{cal}	1	RO _{cal}	1
MA	MA _{cal}	cellulose	MA_{cal}	eau	MA_{cal}	eau
DD [mm]	DD	60.5	DD	60.5	DD	60.5
HD [mm]	HD	38	HD	38	HD	38

3

Effet de l'interface H1 entre la source et le détecteur

Effet de l'interface H1 entre la source et le détecteur

Filtre 0.25 Litre Rendement rel. fonction de H1 [mm Rendement rel. fonction de H1 [mm L rel. efficiency change 0% -5% H1eff = 0H1eff = 0H1eff = 1-10% H1eff = 1H1eff = 2H1eff = 2H1eff = 3-15% H1eff = 3-15% H1eff = 4 H1eff = 4•H1eff = 5 H1eff = 5-20% -20% H1eff = 6H1eff = 8 -25% -25% H1eff = 10-30% -30% 10 100 1000 Energy keV 10 100 1000 Energy keV

L'interface source-détecteur a un effet significatifs sur le rendement

- Filtre: variation interface = $2 \text{ mm} \rightarrow \text{variation du rendement de } 10\%$
- 0.25 Litre: variation interface = 4 mm \rightarrow variation du rendement de 10%
- L'effet augmente avec l'énergie du Gamma

Influence de la hauteur de remplissage Hs

Influence de la hauteur de remplissage Hs

geometry: 0.25 Liter rel. volume * efficiency in function of the filling HS [mm] Volume * efficiency [cm³ * imp / gamma]

La hauteur de remplissage Hs a un effet significatifs sur le rendement

- 0.25 Litre: variation de Hs = 5 mm → variation du rendement de max 9%, (dépendant de l'énergie)

Influence du parallaxe PA

Influence de la variation du positionnement de la source Influence du parallaxe PA •

geometry: 0.25 Litre beaker

Si le déplacement parallèle est inférieur à 5 mm, la variation sur le rendement sera moins de 2%.

Cet effet sera plus important si le diamètre de la source est comparable au diamètre du détecteur.

Influence relative des différentes couches

Mise en évidence de l'influence relative des différentes couches dans la source

→ Importance de l'homogénéité dans la source

Influence de la densité RO et de la matrice MA de la source

👽 Influence de la densité RO et de la matrice MA de la source

geometry: 0.25 litre beaker rel. efficiency as a function of MA

Le rendement dépend fortement de la densité de l'échantillon, avec un effet inversement proportionnel à l'énergie

La correction de la matrice est essentiel aux basses énergies En dessus de quelques 200 keV, cet effet est négligeable pour les éléments « légers ».

En pratique, la densité et la composition doivent être considérée

Effet de l'interface H1 entre la source et le détecteur sur les pertes par sommation vraie (cascade)

Effet de l'interface H1 entre la source et le détecteur sur les pertes par sommation vraie (cascade)

Pour les transitions étudiées

- Pour un interface H1 > 200 mm, les pertes par sommation sont inférieures à 1%
- Pour un interface H1 ~ 100 mm, les pertes par sommation sont de quelques pourcent
- Pour des interface H1 très petit, des corrections d'environ 50% sont observées (voir plus pour des détecteurs à haute efficacité, par exemple les détecteurs à puit)

A remarquer que l'intensité de cet effet dépend du schéma du nuclide et peut être négatif

Consition, matrice et densité: influence sur le rendement

Résumé non exhaustif

Variation du parai	Effet sur le rendement		
interface source – détecteur (H1)	2 mm	10%	
hauteur de remplissage (HS)	5mm	10%	
parallaxe source – détecteur (PA)	5 mm	< 2%	
	H1 >/= 200 mm: négligeable		
distance source – détecteur (H1) sur les pertes par cascade	H1 ~ 100 mm: quelques %		
	H1 petit: 50% et plus		
densité de la source	0.5 - 1.5 g/cm3	15%	
matrice de la source	Remarquable pour E < 200 keV		
différentes couches de la source	facteur 5 dans le cas de la géométrie 0.25 litre		

V Influence de la matrice MA de la source

Cas de l'intercomparaison BAG-IRA de 2017

👽 Influence de la matrice MA de la source

Cas de l'intercomparaison BAG-IRA de 2017

Code Descriptio	Description	Volume de	Pes	Densité	
		mesure	ml	g	g/cm³
No. 7	TENORM	12LS, 500 ml	500	664.99	1.33

Influence de la matrice MA de la source

Cas de l'intercomparaison BAG-IRA de 2017 Analyse de la composition par fluorescence

Influence de la matrice MA de la source

Cas de l'intercomparaison BAG-IRA de 2017 Analyse de la composition par fluorescence

	Masse rel moyenne				
Elément	H2O	Terre Chemnitz (SOIL-1)	TENORM		
AI		7.6%	0.1%		
As			0.8%		
С		0.1%			
Ca		3.4%	2.4%		
CI		0.2%			
Cr			0.8%		
Fe		4.7%	0.4%		
H	11%	0.9%	8.6%		
K		2.4%	1.0%		
Mg		2.0%			
Mn		0.1%			
Na		2.6%			
Ni			0.1%		
0	88.90%	49.5%	68.8%		
Р		0.1%	0.3%		
Pb			2.7%		
s		0.0%	13.1%		
Sb			0.1%		
Si		25.8%	0.5%		
Ti		0.4%			
V			0.1%		
Zn			0.3%		

👽 Influence de la matrice MA de la source

• Cas de l'intercomparaison BAG-IRA de 2017

Code original	Description	Volume de mesure	Pes	Densité	
			ml	g	g/cm ³
No. 7	TENORM	12LS, 500 ml	500	664.99	1.33

V Influence de la matrice MA de la source

- Cas de l'intercomparaison BAG-IRA de 2017
- De nombreuses analyses sont effectuées sans tenir compte de la matrice
- La détermination de l'autoabsorption avec une source externe néglige certains effets
- La norme ISO 20042 « Méthode d'essai générique par spectrométrie gamma » présentera différentes méthodes à disposition

21